

This article was downloaded by:

On: 30 January 2011

Access details: Access Details: Free Access

Publisher *Taylor & Francis*

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Spectroscopy Letters

Publication details, including instructions for authors and subscription information:

<http://www.informaworld.com/smpp/title~content=t713597299>

Identification and Characterization of 4-Hydroxy-2H-1,2-benzothiazine-3-carboxylic Acid 1,1-Dioxide Derivatives by Mass Spectroscopy

M. G. Lorenzo^a; C. B. Schapira^a; I. A. Perillo^a

^a Departamento de Química Orgánica, Fac. de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, República Argentina

To cite this Article Lorenzo, M. G. , Schapira, C. B. and Perillo, I. A.(1994) 'Identification and Characterization of 4-Hydroxy-2H-1,2-benzothiazine-3-carboxylic Acid 1,1-Dioxide Derivatives by Mass Spectroscopy', *Spectroscopy Letters*, 27: 3, 387 — 395

To link to this Article: DOI: 10.1080/00387019408000853

URL: <http://dx.doi.org/10.1080/00387019408000853>

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: <http://www.informaworld.com/terms-and-conditions-of-access.pdf>

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

IDENTIFICATION AND CHARACTERIZATION OF
4-HYDROXY-2H-1,2-BENZOTHIAZINE-3-CARBOXYLIC ACID 1,1-DIOXIDE
DERIVATIVES BY MASS SPECTROSCOPY

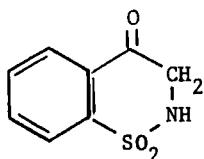
Key words: Electron Impact Mass Spectra, 4-Hydroxy-2H-1,2-benzothiazine-3-carboxylic Acid 1,1-Dioxide Derivatives.

M. G. Lorenzo, C. B. Schapira and I. A. Perillo*

Departamento de Química Orgánica, Fac. de Farmacia y Bioquímica,
Universidad de Buenos Aires, Junín 956 (1113), FAX: 962-5341,
Buenos Aires, República Argentina.

ABSTRACT

Electron impact mass spectral fragmentation of certain esters and amides derived from 4-hydroxy-2H-1,2-benzothiazine-3-carboxylic acid 1,1-dioxide is described. Common ions to both series may be observed, as well as others allowing them to be differentiated. The method is promissory for identification and analysis of these compounds.


INTRODUCTION

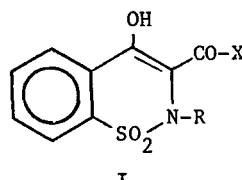
Interest in 4-hydroxy-2H-1,2-benzothiazine-3-carboxylic acid 1,1-dioxide (I, X=OH, R=H) derivatives was enhanced by the discovery of potent anti-inflammatory activity in certain carboxami-

* To whom correspondence should be addressed.

des¹⁻⁴. Both IR and ¹H-NMR spectra of several esters⁵ and amides⁶ were studied and support the enolic structure of these compounds. However, to the best of our knowledge, there has been no systematic study dealing with the electron impact (EI) behaviour of such compounds and only the mass spectrum of Pyroxicam (I, X=NH-2-pyridyl, R=CH₃) has been described so far⁷. In an intent of establish a correlation between mass spectrum and structure of this family, we report here the EI mass spectra of a series of esters and amides derived from the above acid (Table 1) together with that of the unsubstituted compound 15 which, in contrast to the previous ones,⁵ possesses ketonic structure⁵.

15

EXPERIMENTAL


Mass spectra were recorded on a Hewlett-Packard Gas Chromatograph (GC) 5890 Series II with an HP1 active column (12 m x 0.2 mm x 0.33 μ m) and 5971A mass selective detector, employing 70 eV electron energy and 290°C source temperature. Samples were introduced as methanol solutions through the GC at 250°C with a 2 min. solvent delay. Mass measurements were performed by scanning with a resulting 2306 V voltage.

Compounds 1-4⁵, 5¹, 6⁸, 7⁶, 8⁶, 9⁹, 10⁶, 11⁶, 13⁹ and 15⁵ were prepared by procedures described in literature. Compounds 12¹ and 14¹ were obtained by reaction of compounds 7 and 10 respectively with methyl iodide in ethanolic sodium ethoxide. The samples were purified by recrystallization to constant m.p. Purity was ascertained by t.l.c. experiments on Silica Gel GF 254.

RESULTS AND DISCUSSION

The main fragment ions in the EI mass spectra of compounds 1-15, as well as their relative intensities, are given in Table 2.

TABLE 1
4-Hydroxy-2H-1,2-benzothiazine-3-carboxylic Acid 1,1-Dioxide
Derivatives

Compound	X	R
1	OCH_3	H
2	OC_2H_5	H
3	$\text{OCH}(\text{CH}_3)_2$	H
4	$\text{OC}(\text{CH}_3)_3$	H
5	OCH_3	CH_3
6	NH_2	H
7	NHCH_3	H
8	$\text{NHCH}(\text{CH}_3)_2$	H
9	$\text{N}(\text{C}_2\text{H}_5)_2$	H
10	NHC_6H_5	H
11	$\text{N}(\text{CH}_3)\text{C}_6\text{H}_5$	H
12	NHCH_3	CH_3
13	$\text{NHCH}(\text{CH}_3)_2$	CH_3
14	NHC_6H_5	CH_3

A representative mass spectrum is shown in Fig. 1. With the exception of compound 6 all spectra display the molecular ion peak. Ions at m/z 51, 76, 77, 104, 105, 152 and 169 are observed with variable intensity. Typical fragments for esters (compounds 1-5) and amides (compounds 6-14) allowing them to be differentiated are commented afterwards. The possible fragmentation routes are shown in Scheme 1.

TABLE 2
Selected Fragment Ions in the EI Mass Spectra of Compounds 1-15 [m/z (% relative abundance)]

Ion	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
m/z 51	(25.5) (31.3)	(26.9) (57.4)	(28.3) (18.2)	(29.7) (0.2)	(26.9) (15.7)	24.0	25.4 (33.2)	26.2 (42.2)	29.6 (2.8)	31.6 (68.2)	33.0 (2.3)	26.8 (8.4)	29.6 (37.5)	33.0 (2.5)	19.7 (2.4)
[m/z 1]	(25.6) (3.9)	(27.0) (10.9)	(28.4) (2.3)	(29.8) (2.2)	(27.0) (54.7)	24.1	25.5 (3.8)	26.3 (35.5)	29.7 (1.0)	31.7 (10.4)	33.1 -	26.9 (11.2)	29.7 (5.6)	33.1 (0.5)	19.8 -
[m/z 64]	(19.1) -	(20.5) -	(21.9) -	(23.3) -	(20.5) (18.5)	17.6	19.0 (19.4)	21.8 (22.6)	23.2 (8.2)	25.2 (21.7)	26.6 (4.6)	20.4 (3.5)	23.2 (9.9)	26.6 (3.8)	13.3 (5.4)
[CONR'R"]	-	-	-	-	-	4.4	5.8 (a)	8.6 (52.8)	10.0 (8.4)	12.0 (1.0)	13.4 (1.0)	5.8 (0.6)	8.6 (6.3)	12.0 (5.4)	-
[NR'R"]	-	-	-	-	-	16	30 (a)	58 (27.5)	72 (68.5)	92 (1.0)	106 (1.7)	30 (a)	58 (19.4)	92 (0.9)	-
[H-CONR'R"]	-	-	-	-	-	196	196 (1.1)	196 -	196 -	196 (13.2)	210 (10.0)	210 -	210 -	210 -	
m/z 51	(15.4)	(29.1)	(27.7)	(10.2)	(25.2)	(7.6)	(35.3)	(31.3)	(6.5)	(8.2)	(7.6)	(6.7)	(14.1)	(5.6)	(10.6)
m/z 76	(55.1)	(61.6)	(56.6)	(15.3)	(55.4)	(5.4)	(64.6)	(53.2)	(15.3)	(13.2)	(11.9)	(80.8)	(26.6)	(74.2)	(72.2)
m/z 77	(32.4)	(28.9)	(37.0)	(8.7)	(35.2)	(6.4)	(69.8)	(58.5)	(14.1)	(5.8)	(7.8)	(17.2)	(32.3)	(6.3)	(4.8)
m/z 104	(10.0)	(100)	(115.4)	(100)	(46.5)	(46.5)	(87.2)	(70.5)	(11.7)	(6.4)	(16.2)	(10.0)	(44.7)	(100)	(100)
m/z 105	(42.9)	(43.6)	(44.5)	(17.5)	(24.7)	(100)	(100)	(63.0)	(5.1)	(24.4)	(19.9)	(26.8)	(37.7)	(17.6)	(55.0)
m/z 117	-	-	-	-	(79.7)	-	-	-	-	-	-	(6.8)	(62.1)	(15.4)	-
m/z 152	(5.9)	(14.4)	(4.9)	(3.5)	(4.8)	(5.3)	(6.5)	(9.3)	(3.8)	(9.3)	(2.5)	(69.8)	(6.5)	(69.5)	(1.5)

m/z 168	(13.0)	(18.7)	(26.1)	(7.6)	(12.4)	-	-	-	-	-	-	(3.9)
m/z 169	(9.3)	(13.1)	(14.5)	(3.6)	(7.0)	(4.6)	(8.0)	(9.7)	(5.1)	(3.6)	(16.4)	(22.8)
m/z 223	(8.4)	(20.4)	(46.4)	(24.7)	-	-	-	-	-	-	-	-
m/z 224	(3.2)	(5.0)	(9.5)	(7.2)	-	-	-	-	-	-	-	-
m/z 237	-	-	-	-	(11.8)	-	-	-	-	-	-	-
m/z 238	-	-	-	-	(3.9)	-	-	-	-	-	-	-
m/z 241	-	(11.6)	(80.3)	(100)	-	(54.7)	(b)	-	-	-	-	-
Other ions (c)	102 (15.1)	102 (20.3)	102 (12.7)	57 (32.5)	56 (25.2)	103 (17.2)	85 (85.5)	60 (39.7)	56 (10.2)	93 (100)	197 (19.4)	118 (16.4)
	103 (20.5)	131 (25.0)	103 (17.8)	242 (11.0)	75 (11.3)	131 (26.4)	131 (26.4)	113 (29.7)	196 (100)	146 (14.8)	197 (12.3)	70 (18.9)
	131 (22.8)	132 (12.3)	131 (20.3)	118 (13.9)	118 (10.8)	132 (16.9)	132 (16.9)	131 (16.0)	196 (100)	147 (14.8)	197 (11.3)	91 (18.0)
	132 (10.6)	149 (37.8)	149 (20.5)	162 (13.5)	162 (13.5)	148 (42.9)	148 (42.9)	149 (22.0)	159 (60.7)	159 (60.7)	159 (16.4)	146 (10.0)
	148 (27.3)	159 (20.6)	167 (12.4)	242 (11.8)	237 (30.9)	159 (30.9)	162 (40.4)	190 (23.3)	197 (11.9)	197 (11.9)	197 (100)	146 (10.2)
	159 (12.9)	167 (13.2)	-	-	176 (18.5)	176 (18.5)	180 (19.4)	218 (22.6)	190 (19.4)	190 (32.1)	190 (32.1)	146 (10.2)

(a) Ions with $m/z < 50$ are not recorded. (b) Corresponds to $[\text{M}+\text{H}]^+$ ion. (c) Peaks greater than 10% are included.

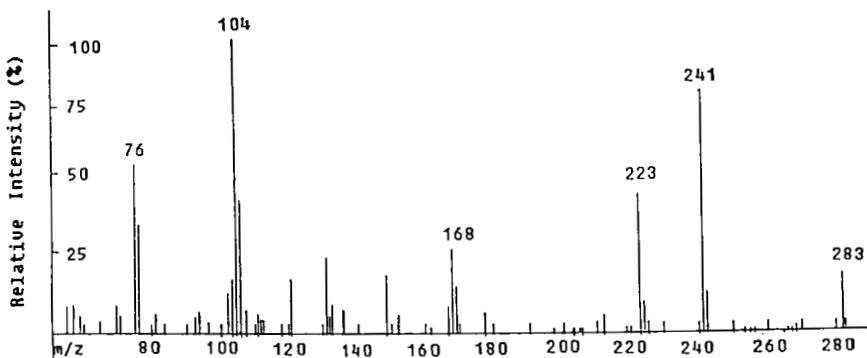
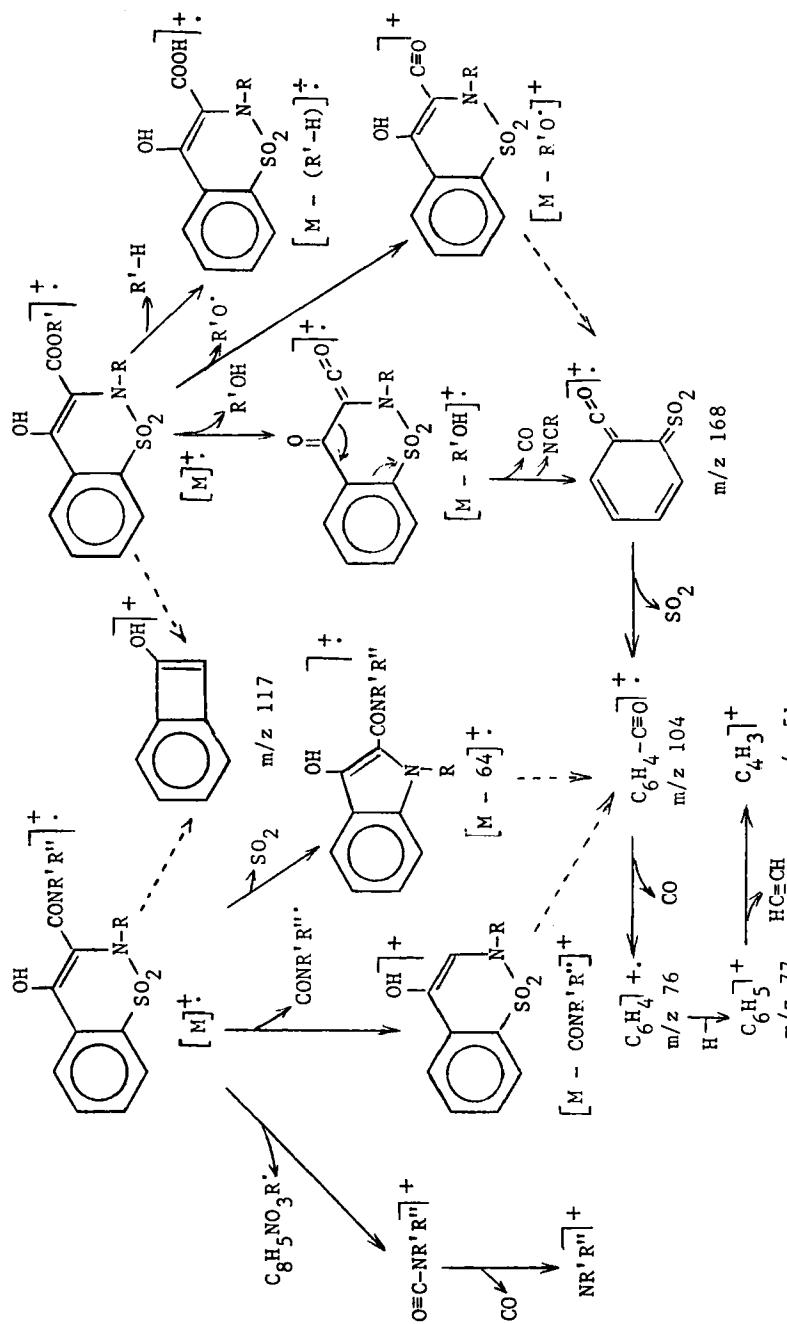



FIG. 1. Mass spectrum of compound 3.

In the alkyl carboxylates (I, $X=OR'$), while the methyl ester 1 shows a considerable M^+ (37.3%), in higher alkyl esters with increasing chain branching of the alcohol, the molecular ion peak becomes progressively smaller and in compound 4 it is virtually negligible (0.5%). Concurrently, the m/z 241 peak [$M-(R'-H)$] $^+$, probably the carboxylic acid ion which may arise by a McLafferty rearrangement, becomes more significant and is in fact the base peak in *t*-butyl ester. As may be expected this fragment is absent in the methyl esters 1 and 5 for which the loss of alkene is unavailable.

Fragments appearing in all esters examined are the m/z 168 and those corresponding in composition to the loss of $R'OH$ and $R'O$ from the molecular ion (m/z 223 and 224 for compounds 1-4 and m/z 237 and 238 for compound 5). Fragment m/z 168 (Scheme 1) was proposed to demonstrate the ketonic structure of 3-acetyl-4-hydroxy-2*H*-1,2-benzothiazine 1,1-dioxide (I, $X=CH_3$, $R=H$)⁸. However, in our case, this peak appears both in esters whose structure is recognized to be enolic⁵, and in the ketonic compound 15 though to a lesser degree (3.9%). The expulsion of SO_2 from this ion probably produces the fragment m/z 104, which is the base peak in the esters except in *t*-butyl ester 4.

Scheme 1

As regards the examined amides unsubstituted in the sulphonamidic nitrogen (I, $X=NR'R''$, $R=H$), the secondary ones (Compounds 7, 8 and 10) present substantially stronger molecular ions (33.5-68.2%) than the tertiary amides (compounds 9 and 11). In the latter, the lower molecular abundance agrees with the lesser chemical stability observed for this amide type¹⁰. Throughout, N-sulphonamidic methylation decreases molecular ion abundance. Primary amide 6 lacks the molecular ion peak, but like other amides¹¹ presents a considerable ion($M+1$) (m/z 241, 54.7%).

In all examined amides, ions ($M - 64$)⁺, corresponding to SO_2 expulsion from the M^+ , are present with variable intensity (3.5-22.6%), as well as those corresponding to the $CONR'R''$ and $NR'R''$ fragments for N-alkyl amides (m/z 100, base peak in compound 9), and $M - CONR'R''$ fragment for N-aryl amides (m/z 196 base peak in compound 11). In contrast to esters no m/z 168, 223 (or 237), 224 (or 238) and 241 are observed. The base peak has no diagnostic value since it fails to correspond preferentially to any common ion.

Besides the peaks observed in each series, 2-methyl derivatives present a characteristic m/z 117 peak of appreciable intensity. Mihalic et al. proposed the structure shown in Scheme 1 for an ion having this m/z ratio, present in the Pyroxicam spectrum⁷.

On the basis of the foregoing results, it is encouraging to point out the usefulness of the mass spectrometry in the identification, structure determination and analysis of 4-hydroxy-2H-1,2-benzothiazine-3-carboxylic acid 1,1-dioxide derivatives.

ACKNOWLEDGEMENTS

This work was financially supported by the Consejo Nacional de Investigaciones Científicas y Técnicas and Universidad de Buenos Aires. We thank Dr Eduardo Austin for recording the mass spectra and Mrs Mónica Dal Maso for her help in the preparation of the compounds.

REFERENCES

1. Lombardino, J. G., Wiseman, E. H. and McLamore, W. M. J. Medic. Chem. 1971; 14: 1171.

2. Lombardino, J. G. and Wiseman, E. H. *J. Medic. Chem.* 1972; 15: 848.
3. Zinnes, H., Lindo, N. A., Sircar, J. C., Schwartz, M. L., Shavel, J. Jr. and DiPasquale, G. *J. Medic. Chem.* 1973; 16: 44.
4. Zinnes, H. Sircar, J. C., Lindo, N. Schwartz, Fabian, A.C., Shavel, J. Jr., Kasulanis, C., Genzer, J. D., Lutomski, C. and DiPasquale, G. *J. Medic. Chem.* 1982; 25: 12.
5. Schapira, C. B., Perillo, I. A. and Lamdan, S. *J. Heterocyclic Chem.* 1980; 17: 1281.
6. Perillo, I. A., Schapira, C. B. and Lamdan, S. *J. Heterocyclic Chem.* 1983; 20: 155.
7. Mihalic, M., Hofman, H., Kajfez, F., Kuftinec, J., Blazevic, N. and Zinic, M. *Acta Pharm. Jugosl.* 1982; 32: 13.
8. Rasmussen, C. R. *J. Org. Chem.* 1974; 39: 1554.
9. Schapira, C. B. and Perillo, I. A. *J. Heterocyclic Chem.* (In press).
10. Perillo, I. A. and Schapira, C. B.. Unpublished results.
11. McLafferty, F. W. *Interpretation of Mass Spectra*, 3rd ed., University Science Books, Mill Valley, California, 1980.

Date Received: October 28, 1993

Date Accepted: November 29, 1993